(O/CORNER

This column focuses on secure computing, providing tools and tips for those in the information security trenches. Each
issue, we’ll evaluate new technologies (primarily in the open source space) and discuss ways to integrate them into your

organization.

We want to hear from you. Got a great utility or “magic” script that’s saved you hours of tedious keyboard pounding?
Something new we haven’t heard about? Let us know at ciocorner@sandstorm.net.

Knock Knock

ecurity through obscurity” has
E ; gotten a bad rap in the infosec
realm. Basically it means that “security”
is achieved by concealing protection
mechanisms under the assumption that
no one will be able to figure out how to
break them. In many cases, this reason-
ing is demonstrably bad, and recog-
nized as such by the community.
However one must not summarily
discount applications because they fall
into this category. A little common
sense goes a long way.

A good example is “port knocking,” a
cleaver alternative to firewall authenti-
cation. The standard approach to
firewalling is to deny or allow access to
certain hosts or applications based on
the IP address of the client machine.
This works well for remote access if the
client IP is known ahead of time, but the
majority of broadband and dial-up users
are assigned dynamic addresses. Also,
users may need to connect on the road
(an Internet cafe, for example). Port
knocking tackles this problem by
requiring a client to send a series of
“knocks” before they are allowed to
connect. The cleaver bit is that the
knocks are sent to closed TCP ports.

At its core, this may seem like security
through obscurity, and be dismissed
as such. Sure, it’s obscuring access
points and adding another layer of
complexity to authentication. But
what’s wrong with that? There are
arguments on both sides of the issue
(and an excellent rebuttal by Jay Beale,
author of one port knocking implemen-
tation at www.portknocking.org). In real-
ity, port knocking is an authentication

scheme that necessarily obscures. It
makes great sense when you want to
protect stuff.

One implementation is available at
www.portknocking.org. The reference
system uses the logging capabilities of
IP tables to verify authentication. A
client sends a series of connection
attempts (SYN packets) on various ports
to a firewall. The packets are silently
dropped and logged. A port knocking
daemon (running a machine with
access to your firewall) parses these
logs looking for the correct series of
connection attempts. Once detected, it
can dynamically modify the firewall
rules to allow temporary access to any
port from a specified IP address.

Given enough time and enough Perl,
you could use a port knocking sequence
to start the coffee machine at work. As
Beale notes, SSH is an excellent applica-
tion to protect with port knocking.
Obviously this system doesn’t work
with public services such as web or
email, but does with SSH and its ilk that
are access-limited to trusted users. With
SSH, port 22 would appear closed until
the client completed the correct knock,
at which point it would be opened for a
brief (configurable) period.

The benefit of this system is that it
provides remote access from arbitrary
clients, while at the same time obscuring
the fact that it is providing service.
Since the service port is closed, it is likely
to be passed over by worms or “ran-
dom” Internet scans. This may afford
the administrator a little more time to
patch a vulnerable system when an
exploit is discovered.

PORT KNOCKING SYSTEMS

A primitive port knocking system
might work like this: A client sends SYN
packets to ports 5643, 234, 6543, 6679,
35546, 192, 14 to an IP Tables firewall. IP
Tables detects and logs the connection
attempts. The port knocking daemon
notices the log file has changed, and
looks for the correct sequence. Seeing
that the correct sequence was entered,
it modifies the IP Tables ruleset
allowing access to SSH.

A simple knock sequence is
easy to set up, but to harden
the system, cryptography
must be incorporated. Since
network traffic may be
intercepted, knocks must
not be reproducible, as an
obvious attack method
would be to watch a
successful connection and
simply replay it. While the
reference system provides
for encrypted knocks, it is
not intended for use in a
production environment.

Because the system uses SYN
packets to relay data, there is far
more overhead than standard data
channels. Passing sufficient encrypted
data with knocks hurts efficiency.
More work needs to be done in this area
to balance security and usability.

Another potential problem with the
system is that while it does not require
direct modification of server software,
additional client software is required to
securely construct the knock sequence.
Clients must be able to initiate connec-
tions on arbitrary TCP ports. Either of

44 | CyberDefense Magazine | 4.2004

HEHOUSE G0 Mike Yamamoto

these functions may be forbidden in
certain computing environments.

Clients must also be informed of the
correct knock sequences ahead of time,

since passing this data over the same
channel as the authentication is princi-
pally bad.

This isn’'t a new idea. The “black hat”
community has been using similar
techniques to hide covert entry points
on compromised systems for years. This
may be a case where the evil uses far
outweigh the good ones (i.e., it might be

a lot more useful to the hacker hiding
his root shell from your port-scan-
ner than for you to obscure serv-

ice from your users).

KNOCKING FUTURE
However, the recent
rise in popularity and
community awareness
around port knocking
may lead to a more
stable (and ultimately
more useful) imple-
mentation. We're
not there yet. But
with the refer-
ence code, an IP
Tables box, your
favorite scripting
environment and
a little imagination,
port knocking can
be molded in some
really interesting ways.
It's not for everyone, but
likely a welcome addition
to certain computing niches.
For example, creating your
own Knoppix disc that mounts
a persistent home directory over
the Internet.
In this example, a custom Knoppix

distribution would be constructed
containing a port knocking client. This
client would be configured to initiate a
knock on a remote system during
startup to open SSH service. An NFS
export could then be tunneled through
an SSH connection to mount a remote
home directory that would persist after
the Knoppix session ends. Public/
private key encryption could be incor-
porated using a USB key chain. This
would provide a complete, secure
and extremely portable system (using
free software).

Summarily dismissing a creative
application like port knocking because
it seems “obscure” has the potential to
let a clever way to harden a firewall go
by the wayside. Imagine a day when all
the ports are closed on all the firewalls.
Certainly this would put a lid on the
current port-scanning problem. ¢DM

RESOURCES:
http://www.portknocking.org/

http://www.linuxjournal.com/
http://www.netfilter.org/
http://www.knoppix.org/

Walker Whitehouse is CIO and Mike
Yamamoto is a Network Systems
Engineer at Sandstorm Enterprises,
which develops aggressive software
products for network monitoring,
network forensics analysis, and security
auditing including telephone scanning,
penetration testing, and vulnerability
assessment.

4.2004 | CyberDefense Magazine | 45

